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A B S T R A C T

Surface waters are frequently impaired by excessive phosphorus (P) from nonpoint sources, especially in

regions of intensive livestock agriculture. Despite concerted efforts to apply new management measures,

reductions in nonpoint source P loads have been difficult to accomplish. Watershed management to

reduce P export could be more cost-effective if treatments were targeted to critical source areas at high

risk for excessive P export. These critical source areas can be defined as the intersection of P source areas

and active runoff contributing areas; such areas vary in space and time due to watershed characteristics

and management practices. We developed an approach to identify, analyze, and map high-risk areas for P

export by integrating spatial data with land use and agronomic data. We evaluated changes over time and

space in soil P concentration and P export in response to changes in inputs and outputs with a dynamic

mass-balance simulation model running in grid cells across a watershed. The temporal and spatial

relationships that define the risk of P export are captured simultaneously using a raster-based distributed

dynamic modeling approach and related to management interventions. Simulated responses to

management interventions are analyzed and displayed spatially through a geographic information

system (GIS). This approach allows the spatial distribution of P runoff risk to be tracked through time in

response to long-term P input/output balance, evolving from either continuation of current practices or

from management changes specifically targeted to areas of high P loss risk. Baseline simulations show

that if present-day management continues, both soil test P and P export will increase dramatically in

some parts of a test watershed; critical P source areas in a watershed will evolve over time and are likely

to occur in limited areas that can be identified and tracked. Model results can contribute to improved

targeting of scarce resources by focusing management interventions on those areas at highest risk of

nutrient loss. This paper describes the underlying principles of the model, discusses the process of model

development, and presents the final modeling system. Application of the model to alternative

management scenarios is discussed in a subsequent paper.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many U.S. surface waters are impaired by excessive phosphorus
(P) from nonpoint sources (USEPA, 2000). Management to reduce
watershed P export is a priority and a challenge, especially in
regions of intensive livestock agriculture (Sharpley et al., 1997;
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Daniel et al., 1994). However, it has proven difficult to integrate
specific management actions with the dynamics of human activity,
watershed characteristics, and P storage, cycling, and transport
processes to achieve P export reduction goals.

Many factors control watershed P export, including hydrology,
geology, soils, land use, agricultural and industrial activities,
population, and waste treatment (Dillon and Kirchner, 1975;
Omernik, 1976, 1977; Clesceri et al., 1986). In agricultural areas, P
may accumulate in soils from over-application of nutrients from
fertilizer or manure relative to crop need. Excessive soil P levels
have been linked to high P losses in runoff, especially in areas of
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animal-based agriculture (Breeuwsma et al., 1995; Pote et al.,
1996; Lander et al., 1998; Sims et al., 2000). Contributions to
watershed P load from urban land, including wastewater
discharges and stormwater, are also significant and may exceed
those from agricultural land on an areal basis (Frink, 1991).

Early approaches to nonpoint source P management focused on
field-scale transport issues, with erosion control as the principal
tool. Subsequently, source issues were also addressed, primarily at
the farm scale through nutrient management. More recently, both
source and transport issues have been considered at the watershed
level (Gburek et al., 2000b). Today, nonpoint source P export from
watersheds is understood to be controlled by interaction between
P sources and transport mechanisms.

In agricultural watersheds, soils are the major stock of P
available for loss, along with fertilizers and manure applied to soils.
Soil P content is determined by both management activities (e.g.,
nutrient application, and cropping) and by soil characteristics (e.g.,
drainage class, P sorption characteristics). All of these conditions
vary spatially. Areas of excessive soil P also vary in time in response
to P accumulation or depletion due to changing balance between
inputs and outputs.

Transport of P in a watershed occurs mainly through surface
runoff and erosion. It is widely believed that only certain
watershed areas generate surface runoff that may transport P to
a stream. Overland flow results either from infiltration excess,
where precipitation cannot infiltrate because rainfall rate exceeds
infiltration capacity of the soil, or from saturation excess, where
precipitation cannot infiltrate because the soil is already saturated.
In the humid Northeast, most storm runoff is believed to derive
from saturation excess (Dunne and Black, 1970; Ward, 1984).
These saturated runoff contributing areas (RCAs) vary spatially and
temporally by geology, topography, soils, rainfall characteristics,
and storm magnitude (Dunne and Black, 1970). As RCAs change in
size with season or storm magnitude, they are referred to as
variable source areas (VSAs) (Dunne and Black, 1970; Franken-
berger et al., 1999). In general, only a small proportion of a
watershed is believed to be responsible for the majority of P
exported in runoff (Sharpley et al., 1994; Daniel et al., 1994;
Heathewaite et al., 2000; Walter et al., 2000).

The intersection of high P source areas and probable RCAs
defines critical source areas at high risk for excessive P export.
Watershed management to reduce P export could be more cost-
effective if treatments were targeted to these high P source areas
(Gburek et al., 2000a,b). Walter et al. (2001) suggested that a 25%
reduction in watershed soluble P loading was possible by adjusting
the timing and location of manure application on hydrologically
sensitive areas. This kind of management requires the ability to
identify source areas, visualize how they may change through time
and space, and adjust management programs accordingly. But
government programs such as the Environmental Quality Incen-
tives Program (EQIP) (USDA-NRCS, 2005) often ignore the spatial
variability of P export risk and strive to promote interventions
through voluntary participation across an entire watershed.
Without considering hydrologic pathways that govern P transport,
blanket management programs are likely to be too restrictive, too
expensive, or both.

We developed an approach to identify, analyze, and map high-
risk areas for P export by integrating spatial data (e.g., soil
characteristics, topography) with land use and agronomic data
(e.g., P application rates, cropping patterns). We evaluated changes
over time and space in soil P concentration and P export in
response to changes in inputs and outputs with a dynamic mass-
balance simulation model running in grid cells across a watershed.
The temporal and spatial relationships that define the risk
of P export are captured simultaneously using a raster-based
distributed dynamic modeling approach and related to manage-
ment interventions. We spatially analyzed and displayed simu-
lated responses to management interventions using a geographic
information system (GIS). This approach allows the spatial
distribution of P runoff risk to be tracked through time in response
to long-term P input/output balance, resulting from either
continuation of current practices or from management changes
specifically targeted to areas of high P loss risk.

This paper describes the underlying principles of the model,
discusses the process of model development, and presents the
modeling system. Application of the model to selected manage-
ment scenarios in a test watershed is presented in Meals et al. (this
issue).

2. Modeling approach

We combined principles of watershed mass-balance with the
concepts of the P index and variable source area hydrology over a
long temporal scale (decades). Our approach included four
components – a dynamic watershed mass-balance P model, the
Vermont P index, identification of runoff contributing areas, and
GIS – combined in a spatial modeling environment.

2.1. Dynamic watershed mass-balance P modeling

Although we ultimately simulate the spatially and temporally
dynamic behaviors of P at the watershed scale, the model is based
on the building-block of a comprehensive accounting of rates at
which P mass enters and leaves a homogeneous land unit (pixel)
over time and the amount of P mass stored in that pixel at any time.
Dynamic mass-balance models are based on the principle that if
the sum of the inputs (fluxes) of P mass into a pixel exceeds the
sum of the P mass outputs from the pixel, the mass (stock) of P
stored in the pixel increases; if inputs are less than outputs the
stock decreases. The amount of P in a pixel is an important
determinant of the rate at which P is exported from the pixel. For
dissolved P in runoff the rate of export is proportional to soil test P
(Sharpley, 1995). This kind of model can be useful for assessing
effects of alternative P management scenarios at the pixel-level.

At the watershed level, dynamic P mass-balance modeling can
simulate P fluxes and stocks among agricultural, urban, and forest
sectors of large watersheds by identifying and quantifying
pathways of all significant import, export, cycling, and storage
of P within the watershed. These principles are often used to
develop scoping models useful in understanding how an ecological
system works and to analyze the relative importance of processes
and connections (Costanza and Voinov, 2001). This approach has
been previously applied to the Watershed Ecosystem Nutrient

Dynamics (WENDs) modeling process to explore long-term effects
of watershed management strategies on environmental and
economic goals (Cassell et al., 1998b, 2001, 2002; Aschmann
et al., 1999). However, WEND models have not been spatially
explicit and typically lump modeled activities into a single mass-
balance model for agriculture, forest, and urban sectors, then link
sector models together in a watershed model. Our challenge was to
make mass-balance accounting for P spatially explicit over a
complex watershed.

2.2. The phosphorus index

The P index (Lemunyon and Gilbert, 1993) was developed by
scientists from the USDA-Natural Resources Conservation Service
(NRCS), USDA-Agricultural Research Service (ARS), and several
universities to identify landscape areas where the risk for P
accumulation and loss is highest due to P inputs and land
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characteristics. Versions of the P index are used in 47 states to
evaluate the potential for P loss by accounting for source and
transport factors (Sharpley et al., 2003). The P index has been able
to accurately describe site vulnerability to P loss at the farm scale
(Sharpley et al., 2001). Documented correlations between P index
values and P concentrations in surface waters have shown that the
P index can also be used at regional scales to prioritize P loss
vulnerability (Birr and Mulla, 2001). Because the P index is a
snapshot in time, it is limited in its ability to consider long-term
changes in P accumulation in a watershed. We sought to embed the
concept of the P index into the context of long-term mass-balance
dynamics.

2.3. Runoff contributing areas

Our modeling framework incorporated the concept of variable
RCAs as an indicator of P transport potential by surface runoff. We
assumed that runoff is generated by saturation excess driven by
topography and local hydrologic properties. Rapid interflow from
upgradient, impaired drainage, and converging subsurface lateral
flows commonly contribute to saturation excess runoff (Hewlett
and Hibbert, 1967; Beven and Kirkby, 1979). We mapped potential
RCAs based on storm magnitude and incorporated this transport
potential into long-term simulations of watershed P loss.

2.4. Geographic information system

We used the capabilities of ArcGIS (ESRI, Inc.) to prepare,
organize, tabulate, and analyze spatial data necessary for input into
the modeling system and to display results of model simulations.

3. Methods

3.1. Mass-balance model

The starting point is a mass-balance model of a single pixel—the
PPBalModel, formulated within the dynamic simulation modeling
framework provided by the STELLA v. 8 software package (ISEE
Systems Hanover, NH, http://www.iseesystems.com). The PPBal-

Model is defined by the pixel area (3600 m2), the thickness of the
active soil layer, and the height of vegetation. At any point in time,
a mass of P is stored inside this pixel volume, some in the
vegetation, but most in the soil layer. The volume of the soil layer is
a function of pixel area and the thickness of the surficial layer in
which applied P is stored, which varies with land use. We assumed
a thickness of 14 cm for a pixel in corn, the typical plow depth in
annual tillage, but a thickness of 5, 4, and 4 cm for the surficial soil
layer of hay, pasture and urban pixels, respectively, because such
soils are not subject to annual tillage (unless they are rotated with
a tilled crop). For forested pixels, we assumed a soil layer thickness
of 14 cm because of the relatively thick litter layer on the forest
floor. PPBalModel calculations assume the characteristics of the
surficial soil layer are homogeneous.

Phosphorus input and output mass fluxes accounted for in the
PPBalModel include P input in atmospheric deposition, P added to
the land in the form of mineral fertilizers and/or manure to
support crop production or turf grass, P output in harvested
crops, P lost by runoff, and P lost by leaching. The balance of all P
inputs and outputs, reflected as the sum of P contained in the soil
and vegetation in the pixel in an annual time step, determines
how the amount of P stored in the pixel changes over time. This P
balance is an index of both the long-term agronomic productivity
of the pixel soils and the pixel’s potential to affect water quality.
Note that the mass-balance model does not include P input from
adjacent pixels that might contribute runoff. Routing of water
and P through the landscape was beyond the scope of
preliminary model development.

Fundamental parameters of the PPBalModel vary across the
landscape of pixels according to land use or other pixel
characteristics. For example, initial soil test P is higher for a pixel
in corn than for a hayland pixel; erodibility varies with soil type.
Pixel-level accounting of the amount of P stored and the rates at
which P enters and leaves a pixel over time, when modified by
changing the characteristics of each pixel in time and space,
provide a way to assess P dynamics at the watershed level.

The PPBalModel computes the P mass balance in a pixel in an
annual time step over the duration of a simulation run. The model
simultaneously tracks change in the annual P mass balance for
pixels in five different land uses (corn, hay, pasture, forest and
urban) for a number of management conditions that emulate real-
world management of nutrient addition, erosion control, etc. The
model is based on algorithms that incorporate fundamental
notions describing P movement through managed landscapes.
For example, for each pixel, the Revised Universal Soil Loss
Equation (RUSLE) (USDA-ARS, 2006) is used to estimate annual soil
loss, total annual runoff is determined by the USDA Curve Number
Technique (USDA-SCS, 1985). The soluble P concentration in the
runoff and infiltrating water is calculated from an empirical
relationship describing runoff soluble P concentration as a function
of soil test P (Modified Morgan) for soils in the Champlain Valley of
Vermont (Jokela et al., 2004a).

Whenever the sum of all TP inputs exceeds the sum of all TP
outputs, the pixel accumulates TP yielding an increase in the soil
test P levels. If this condition persists, soil P levels may become
high enough to cause off-site environmental degradation due to
high P levels in runoff and infiltrating waters. The reverse occurs
when TP outputs exceed TP inputs in a pixel and the surficial soil
layer is depleted of its TP stock. This condition, if allowed to persist
within the pixel, would eventually impair crop productivity.

Except for atmospheric deposition, TP inputs and outputs are
defined by the pixel land use and land management. The
fundamental parameters of the PPBalModel can vary across the
landscape of pixels according to land use or some other condition
of the pixel. An urban pixel may receive high fertilizer P inputs, but
is unlikely to receive manure. Removal of P in harvested silage corn
will differ from P removal in hay harvest. While the PPBalModel is a
single unit model, it includes distinct internal pathways and
parameters for different land uses.

The TP output from a pixel is the major factor causing
degradation of off-site water bodies and management can affect
this output. Because the TP in runoff is often predominantly
associated with the soil particles lost from the pixel, a management
practice that retains sediment particulates within the pixel (e.g.,
erosion control) can lower P loss. Likewise, a management practice
that reduces the amount of surface runoff leaving the pixel can
reduce losses of both particulate and soluble P. However,
simultaneously, any practice that might increase soil P levels in
the surficial soil layer increases runoff P losses because the
concentration of P dissolved in runoff is proportional to soil test P
level. Whenever practices are employed in which the sum of P
inputs in manure and fertilizer exceeds P outputs in harvested
crops, soil P levels increase in the surficial layer. This is prevalent in
modern production agriculture and tends, over time, to increase P
losses through both runoff and infiltration. Phosphorus output
from a pixel is the result of a complex mix of all the above
parameters.

Specific outputs from the PPBalModel allow tracking of many
aspects of change in a pixel over time. These include parameters
that track the level of P in pixel soils, and the rate of particulate and
dissolved P exported from the pixel. All PPBalModel calculations are

http://www.iseesystems.com/


Table 1
Input data for Vermont P index (Jokela, 2005)

Parameter Explanation

Location (county) Determines growing season and snowmelt volumes

Elevation zone Higher elevations receive more precipitation and have more runoff

Soil test P Available P, ppm by modified Morgan’s extraction

Reactive soil aluminum Value affects how much added P becomes tightly bound in soil, rather than appearing in runoff

Manure rate One or two manure applications, lb/ac P2O5

Manure application times Affects probability that runoff will occur (each application)

Manure application methods Incorporation by tillage reduces exposure of manure P to runoff (each application)

Manure time to incorporation Timing affects probability that runoff will occur (each application)

Fertilizer rate Fertilizer application, lb/ac P2O5

Soil erosion rate Estimated by RUSLE I, t/ac

Soil series Defines the hydrologic soil group (determining runoff) and soil texture (determining influence of buffer on sediment retention)

Surface cover % modifies base runoff amount estimated from elevation and location

Crop/vegetation type Modifies base runoff amount estimated from elevation and location

Total distance to stream Used to calculate a sediment delivery ratio

Vegetated buffer width Used to modify sediment delivery ratio

Manure spreading setback Width in feet of manure setback

Sediment trap/erosion control Existence of sediment control reduces sediment delivery

Table 2
Estimated runoff and percent of watershed contributing runoff from design storms

in the test watershed

24-h storm

return period

Precipitation

depth (mm)

Runoff

depth (mm)

Watershed area

contributing runoff (%)

1 year 53.3 14.7 27

2 years 63.5 20.6 32

5 years 86.4 36.1 41

10 years 96.5 43.4 45

25 years 114.3 57.2 50

50 years 124.5 65.3 52
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carried on an annual time step so the input data and the model
outputs are typically annual averages and annual totals. Simula-
tion runs of any number of years can be defined.

In the PPBalModel, P is modeled as elemental P based on the
‘‘total P’’ typically analyzed in water (USEPA, 1983). Total P values
are related to soil test P values by empirical (linear regression)
relationships used by Jokela (2005) in his adaptation of the
Vermont P index.

Finally, it should be emphasized that once the PPBalModel

simulates P leaving a pixel, the model considers that it has moved
directly into the drainage net and exported from the watershed.
This has been a fundamental characteristic of previous watershed-
scale versions of the dynamic mass-balance models (Cassell et al.,
1998a). Thus, estimates of P export from our simulations cannot be
directly compared to measured loads at the mouth of the
watershed because model estimates ignore P transformations
and attenuation that may occur with overland flow or in-stream
cycling. Model calculations of P mass leaving a pixel can, however,
be expressed as load per unit area and compared to published areal
export coefficients as a means of assessing the reasonableness of
simulation results.

3.2. Phosphorus index

The Vermont P index includes factors for P source potential (soil
test P, fertilizer P, and manure P) and P transport potential (soil
erosion, runoff, and buffer distance), as well as consideration of
manure/fertilizer method, timing, rate of application, and reactive
soil aluminum level (Jokela, 2000, 2005). Input data for the
Vermont P index are given in Table 1.

We incorporated a modified version of the Vermont P index into
the PPBalModel. Some parameters of the Vermont P index,
including distance to stream, buffer width, manure setback, and
sediment trap, were omitted because these data were not directly
applicable to pixels, as compared to fields, for which the P index
was originally intended. We rescaled values of the modified P
index calculated in the model to be comparable to values of the
original index with respect to relative risk levels. Values of the
Vermont P index calculated for each pixel were used to target
management measures in subsequent modeling of alternative
management scenarios (Meals et al., this issue).

3.3. Runoff contributing areas

Because runoff contributing areas change with precipitation
intensity, variability in contributing areas must be included in a
long-term management framework. Approaches for watershed
scale estimation of runoff contributing areas reported in the
literature include complex engineering methods (Boughton, 1990),
soil moisture balance models (Zollweg et al., 1996), the Natural
Resources Conservation Service (NRCS) curve number method
(Steenhuis et al., 1995), and empirical relationships between peak
flow and contributing distance from the stream (Gburek et al.,
2000b).

We delineated estimated runoff contributing areas (RCAs) for a
test watershed in a series of steps using a set of design storms, land
use, soil hydrologic group, and a digital elevation model (DEM).
Design storms (24-h) for the region with return periods from 1 to
50 years were selected from published precipitation maps (USDA-
NRCS, 1986) (Table 2). Runoff from each of the design storms was
estimated using the NRCS curve number (CN) technique (USDA-
SCS, 1985). We assigned curve numbers to each of the land uses
and soil hydrologic groups occurring in the watershed coverage,
assuming ‘‘good’’ hydrologic condition, antecedent moisture
condition II, and prevailing agricultural practices in the region.
We used a distributed CN approach to estimate runoff depth from
each pixel using that pixel’s appropriate CN, then calculated
watershed runoff depth as the mean of all pixel runoff depths. This
distributed approach is preferred because a composite approach
based on areal weighting of component curve numbers tends to
underestimate runoff due to the non-linear relationship between
CN and runoff depth, especially for wide ranges of CN values (Grove
et al., 1998). We used Arc GIS and a spreadsheet to calculate runoff
depth based on CN and soil hydrologic group. Results are shown in
Table 2.

For each design storm, we estimated the percent of watershed
area contributing runoff as the ratio of estimated watershed runoff
depth to precipitation depth, following the approach of Gburek
et al. (2002). In this simplified application of the VSA concept, the
extent of the watershed contributing to surface runoff, assuming
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100% conversion of precipitation to runoff on saturated contribut-
ing areas, is

Ac ¼
Rd

Pd

� �
� Aw (1)

where Ac is the watershed area contributing surface runoff, Rd is
the estimated storm runoff depth, Pd is the precipitation depth, Aw

is the total watershed area.
The ratio of Rd to Pd indicates the percent of the watershed that

functions as an RCA for that storm. The percentage of test
watershed area contributing runoff (i.e., the size of the RCA) for
each design storm is shown in Table 2.

To designate which pixels comprised the RCA for each design
storm, we used a topographic ‘‘wetness index’’ included in the
Terrain Analysis Using Digital Elevation Models (TauDEM)
analytical package, available as an extension for Arc GIS 9.0
(Tarboton, 2002):

ln
tan b

a

� �
(2)

where a is the cumulative upslope area draining through a point
(per unit contour length), and tan b is the slope angle at the point.

The TauDEM wetness index is the inverse of the topographic
index, which is a component of TOPMODEL, a topographically
based variable source area watershed hydrologic model (Beven
Fig. 1. Map showing runoff contributing area (RCAp) probability for pixels in the test w

storm, i.e., each year; a pixel with RCAp = 0.1 is expected to generate runoff only from a 10

generate runoff only from storms exceeding those with a 50-year return period. Polyg
and Kirkby, 1979; Quinn et al., 1991), and reflects the tendency of
water to accumulate at any point in the watershed (in terms of a)
and the tendency for gravitational forces to move that water
downslope (expressed as tan b as an approximation of hydraulic
gradient) (Quinn et al., 1991). Watershed regions that drain large
upstream areas or are very flat tend to yield high values of the
index, are most likely to become saturated during precipitation,
and are therefore most likely to be areas that contribute surface
runoff (Page et al., 2005).

For this application, the lowest values of the wetness index
represent the areas most likely to become saturated during
precipitation and most likely to function as RCAs. We sorted pixels
in rank-order of wetness index from lowest to highest. To assign
pixels to a RCA for a particular storm, we identified the point in the
cumulative frequency distribution of index values corresponding
to the percent of watershed area estimated to contribute runoff for
that storm (Table 2). Then, all pixels with index values less than or
equal to that value were assigned to that RCA. For example, 27% of
the watershed was estimated to fall in a RCA for a 1-year storm. The
wetness index value at the 27th percentile in the distribution is
0.0000; all pixels with wetness values equal to 0.0000 were
assigned to RCA 1. Similarly, the wetness value at the 32nd
percentile (2-year storm) is 0.0001; all pixels with wetness values
less than or equal to 0.0001 but greater than 0.0000 were assigned
to RCA 2. Runoff contributing areas estimated by this method are
mapped in Fig. 1.
atershed. A pixel with RCAp = 1.0 is expected to generate surface runoff in a 1-year

-year or larger storm, i.e., 1 year in 10. Pixels assigned a RCAp < 0.02 are expected to

ons outlined in red indicate zones of elevated initial soil test P.



Fig. 2. Schematic diagram of the DISPLA approach based on the Spatial Modeling Environment (SME) and the PPBalModel.
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3.4. Spatial modeling environment

We used the Spatial Modeling Environment (SME) (Maxwell
and Costanza, 1997; Costanza and Voinov, 2001; Maxwell, 2003)
to link the pixel-based dynamic mass-balance model with a
watershed-level GIS. SME allows a STELLA model to be
simultaneously executed across a complex multi-pixel (raster)
landscape at an annual time step. Non-spatial models are run in
each cell of a gridded model landscape (Fig. 2). SME is the
computational engine (GIEE, 2004; Maxwell et al., 2003) that
links local unit models with input time series and GIS spatial
data.
Table 3
Values for some PPBalModel parameters that define the initial or present-day condition

Model parameter (units) Pixel land use category

Corn Ha

Manure TP input (kg P ha�1 year�1) 53 24

Fertilizer TP input (kg P ha�1 year�1) 29 15

Vegetative TP uptake (kg P ha�1 year�1) 43 29

Soil P assay (mg MMP kg soil�1)a 9.0 6

Depth surficial soil (cm) 14 5

Curve numberb 86 81

These values remain unchanged during PPBalModel baseline simulations.
a MMP = modified Morgan soil P.
b CN for hydrologic group C.
4. Results

Following the approach described above, we combined a
pixel-level mass-balance model, the P index, RCA, and GIS in a
spatially and temporally explicit framework at the watershed
level. We call this framework the Dynamic Interactive Simulation

of Phosphorus Loss Areas (DISPLA) model. To fully illustrate
model dynamics, we first present results of PPBalModel

simulations for individual pixels, then results of a watershed-
level baseline simulation in a test watershed. Application of
DISPLA to alternative management scenarios is presented in
Meals et al. (this issue).
s for pixels in corn, hay, pasture, forest and urban

y Pasture Urban Forest

0 0 0

0 9 0

0 0 0

.0 5.5 15.0 3.0

4 4 14

74 84 70



Fig. 3. Graph of long-term P dynamics for a pixel in corn as computed by the PPBalModel. The simulation shown represents baseline conditions in which present-day

conditions in the pixel are those shown in Table 3 for the entire 100-year period; no management measures were implemented.
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4.1. PixelPBalance model

Interpretation of the patterns of spatial and temporal variability
in P export and soil P levels as well as long-term watershed-scale
trends in P export are facilitated by first understanding the
fundamental dynamics modeled by the PPBalModel.

For pixels in all land use categories, the PPBalModel permits the
user to:
� d
efine the soil and hydrologic conditions for the pixel; such
inputs specify characteristics of the pixel that do not change over
time;

� d
esignate the level of soil test P for the surficial layer of the soils

in the pixel; this input designates an initial condition for the
pixel, a condition that changes over time and is tracked by the
PPBalModel;

� a
ssign the level of P additions to the pixel in manure and/or

fertilizer; these levels are inputs to the model and may change in
accordance with nutrient management;

� a
ssign the level of P exported from the pixel in harvested

vegetation (crops or trees);

� s
pecify the density of grazing animals and grazing conditions of

pixels in pasture; and

� e
Fig. 4. Graph of long-term P dynamics for pixels in corn, hay, pasture, urban, and

forest land use as computed by the PPBalModel. Trends are shown for: TP Balance

(A), soil P assay (B), and TP Export Coefficient (C). The simulations shown represent

baseline conditions in which present-day conditions in the pixel are those shown in

Table 3 for the entire 100-year period; no management measures were

implemented.
mulate a number of different P management practices for
agricultural pixels in corn or hay and for urban pixels, e.g., by
changing levels of P additions and soil loss or changing pixel land
use during the simulation.

Table 3 lists some of the most important parameters for each
land use category that must be defined at the beginning of a
simulation. The values represent a present-day condition for each
land use selected in consultation with state and local agronomists,
agricultural specialists, and agency professionals; however the
degree to which the values selected accurately represent all
watershed land is uncertain.

Fig. 3 shows long-term trends in several important model
outputs from a 100-year baseline (present-day condition) simula-
tion for a pixel in corn. Whenever TP Balance (the sum of all P inputs
to the pixel minus the sum of all P outputs) is positive, the soil test
P (Soil P Assay) in the pixel increases and P export in runoff (P
export Coefficient) also increases, because export of both particu-
late and dissolved P is proportional to soil test P. The increase in the
P Export Coefficient is due solely to the increased soil test P because
soil erosion rates (Soil Loss) remained constant over the 100-year
simulation. For this simulation, TP Balance remained positive over
the entire 100-year period; thus both Soil P Assay and P Export

Coefficient increase over the entire simulation period.
The distinct set of specific conditions that characterize each
land use can yield different long-term trends in Soil P Assay and TP

Export Coefficient. Fig. 4 shows results from 100-year PPBalModel

baseline simulations that compare the long-term trends for pixels
in corn, hay, pasture, urban, and forest. Soil loss differed among
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land uses but remained constant for each land use over the entire
simulation.

At time zero the TP Balance for corn, hay, and urban pixels was
positive, because more P enters the pixels than leaves. The TP Balance

for pasture and forest pixels was negative, as pixel P export exceeds
import (Fig. 4A). We assumed that forest land does not receive P
fertilizer or manure and that pastures receive no fertilizer, while
animal waste P inputs balance the P removed in vegetation
consumed. Consequently, Soil P Assay and TP Export Coefficient

initially increased for the corn, hay and urban pixels but decreased
for the urban and forest pixels (Fig. 4B and C). While the TP Balance

for the corn pixel remained positive over the entire 100-year
simulation, the balance for hay and urban pixels approached zero by
year 50, as does the TP Balance for the forest and pasture pixels. After
year 50, the TP Balance was essentially zero (P inputs = P outputs)
and the pixels approached an equilibrium condition with respect to
P. On the other hand, the Soil P Assay and TP Export Coefficient for the
corn pixel continued to increase for the entire 100 years because P
inputs to the pixels continued to exceed P outputs.

Fig. 4C clearly indicates that if present-day conditions persist,
the P exported from pixels in corn will continue to increase to
levels much higher than present-day and higher than other land
uses. On the other hand, if current conditions persist for pixels in
pasture and forest, P will be ‘‘mined’’ from the soil so that soil P
may become deficient in an agronomic sense. Even though TP

Export Coefficients eventually stabilize for urban and hay pixels
these coefficients are likely to be higher than levels needed to
control nonpoint source pollution from P.

4.2. Management simulation

In this study, we used the PPBalModel to simulate three
agricultural practices alone or in combination that are commonly
used to manage P loss from corn fields. In model simulations, these
measures are triggered for any given pixel by specific conditions or
criteria for that pixel. The practices simulated and the parameters
that trigger them (in parentheses) were Nutrient Management
(soil test P), Land Use Change (P index), and Erosion Control (RCA
values). More detail and results of simulations using these
management practices are presented in a subsequent paper
(Meals et al., this issue).

4.3. Runoff contributing areas

Runoff contributing areas were incorporated into the PPBalMo-

del as probability values assigned to each pixel, representing the
likelihood that runoff would be generated from that pixel in any
given annual time step. Pixels in RCA 1 were assigned an RCA
probability (RCAp) of 1.0, indicating that they generate surface
runoff every year. Pixels in RCA 2 were assigned an RCAp of 0.5,
indicating that the chance of surface runoff from that pixel was 50%
in any given annual time step. Pixels falling outside of the RCA 50
category (RCAp = 0.02) were assigned a RCAp of 0.002 to avoid zero
values. The RCAp assigned to each pixel was subsequently used to
attenuate runoff and P export from that pixel simulated by the
PPBalModel. Pixels of RCAp = 1.0 exported P at 100% of the base
simulated amount; pixels in RCAp = 0.1 (runoff only in 10 year
storm or greater) exported P at only 10% of simulated amount in a
single time step.

4.4. SME configuration and operation

SME was run on a Pentium 3 1000 MHz computer using Red Hat
Enterprise Linux version 3. SME can also run on Unix and
Macintosh operating systems.
Preparation of a model for running in SME requires a series of
steps that build the model from imported Stella equations,
generate the Simulation Markup Language code, and create the
default configuration file that can subsequently be edited
manually. The SME configuration file defines the input data sets,
including input raster maps and variable lookup tables, output
datasets and those data routed to SME’s interactive graphic output
utility (Viewserver). For this application of the model, a simulation
of 80 years took under 30 min of processing time.

SME output can be collected corresponding to a time series for a
single pixel, the sum of a group of pixels, or as a series of raster
maps for specified variables. Pixel output data were used to test
and check the model to ensure that output was consistent with the
original Stella pixel-based model. Class output data (e.g., P export
from all corn pixels) were generated and summed across the entire
watershed for each time step, then exported to a GIS or
spreadsheet for further analysis.

4.5. Baseline simulation

Following development and testing of the DISPLA model, we
simulated the long-term effects of baseline (present-day) condi-
tions in a test watershed in the Champlain Valley of Vermont, USA.
Model input parameters, including geospatial data layers, were
developed as inputs to DISPLA from existing and estimated data. A
complete description of the test watershed and input data
development can be found in Meals et al. (this issue). We ran
simulations for a period of 80 years from present day with land use
held constant, so that neither crop rotations nor changes in
watershed land use distribution were considered. Results were
assessed by two principal parameters: soil test P and pixel P export.
These parameters were viewed in three ways: pixel average for
each land use, watershed aggregate (mean or total), and a spatial
(mapped) distribution.

A true validation of DISPLA results is not possible because of the
long-term simulations conducted in an annual time step and the
lack of appropriate field data. However, comparisons of DISPLA
output with published data provide a reality check on the model.
Baseline year 1 simulations of pixel-level P export show average
values of 1.4 kg ha�1 for corn pixels and 0.5 kg ha�1 from hay
pixels. These modeled values are well within the range of
published export coefficients for corn (�0.8–2.4 kg ha�1) and
hay (�0.4–1.3 kg ha�1) (e.g., Budd and Meals, 1994; Frink, 1991;
Haith and Shoemaker, 1987). Secondly, although DISPLA simulates
P export from land to the drainage net rather than P load at the
watershed outlet, the simulated baseline year 1 aggregate P load of
8.8 t year�1 compares quite well with the magnitude of the P load
from the test watershed measured from 1995 through 2000 (5–
15 t year�1, mean of 10 t year�1) (Medalie and Smeltzer, 2004).

Mean annual soil test P (mg kg�1) for pixels of each modeled
land use is plotted over the 80-year DISPLA simulation in Fig. 5. The
values plotted are mean annual values for all pixels within a land
use class across all soil types, initial soil test P, RCAp, and other pixel
characteristics. Soil test P increased over time in most land uses, as
P inputs continued to exceed P outputs. For pixels in hay and urban
use, soil test P leveled off 40–50 years into the simulation,
reflecting the approach of P inputs and outputs to equilibrium, as
shown in the PPBalModel runs discussed earlier. Soil test P in corn
pixels, however, increased throughout the 80-year simulation.
Driven by the high levels in corn pixels, average soil test P across
the test watershed also increased throughout the simulation. Soil
test P in pasture and forest pixels that receive no anthropogenic P
inputs, gradually declined through the simulation. Note that while
urban pixels began with the highest soil test P, soil P in corn pixels
rapidly exceeded that level and corn pixels represented the highest



Fig. 5. Graph of pixel-average soil test P (mg kg�1) in pixels of different land uses in

the test watershed generated by DISPLA in the baseline scenario. The line labeled

‘‘Watershed’’ represents the average soil test P concentration across all modeled

pixels in the test watershed.

Fig. 6. Graph of pixel-average P export (kg ha�1 year�1) in pixels of different land

uses in the test watershed generated by DISPLA in the baseline scenario. The line

labeled ‘‘Watershed’’ represents the average P export across all modeled pixels in

the test watershed.

Fig. 7. Graph of total annual P export from modeled pixels in the test watershed,

averaged within decades of the simulation, as projected by the DISPLA baseline

simulation.
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soil P among the modeled land uses through the end of the
simulation.

Annual P export (kg P ha�1 year�1) from an average pixel of
each modeled land use is plotted over the 80-year DISPLA
baseline simulation in Fig. 6. As shown, P export tended to
increase inexorably through time because soil test P increased as
P inputs exceed P outputs. This was particularly noticeable for
corn pixels, which continued to increase in P export through the
simulation, whereas export from hay and urban pixels appeared
to level off as P export increased to equilibrium with P inputs.
This is the same pattern observed in the PPBalModel for an
individual pixel. P export from pasture and forest pixels, where
soil test P declined through the simulation, gradually declines as
well.

To show long-term temporal patterns in DISPLA simulations,
we examined the means and totals for each decade through the 80-
year simulation. Averaging or totalling within a decade smoothes
out cyclic behavior of some variables and simplifies visualization of
long-term patterns.

Analysis of decade mean soil test P over time (not plotted)
indicated that soil test P increased on land in corn, hay, and urban
use over time in response to continuation of present-day P
management. Soil test P in corn land was particularly high,
increasing more than fourfold from an average 15.9 mg kg�1 in
years 1–10 to a mean 78.9 mg kg�1 in years 71–80. Considering
that soil test P of 4–7 mg kg�1 is considered optimum and greater
than 20 mg kg�1 is considered excessive (Jokela et al., 2004b), the
predicted soil P concentrations represent no agronomic benefit but
a clear environmental threat.

Mean annual P export from the entire test watershed over time
in the baseline simulation is shown in Fig. 7, with annual export
averaged over decades. Unlike the ‘‘average pixel’’ data plotted in
Fig. 6, the data plotted in Fig. 7 capture the variability of soil test P,
RCAp, and P export across the test watershed. Trends in P export are
directly driven by the trends in soil test P. Clearly, P export from
cornland pixels was the dominant contributor to aggregate P
export, with export from hayland representing an important
secondary component. In this particular test watershed, urban land
comprised only about 5% of the watershed; consequently, P export
from urban pixels is a very small proportion of the aggregate P load.
P export in runoff from pasture and forest pixels is essentially
negligible. Most importantly, the simulation shows that if present
conditions persist, P export will increase significantly into the
future. From an average of approximately 8.8 t year�1 over years
1–10, P export is projected to increase more than 25% to an average
11.3 t year�1 over years 11–20. Over the course of the entire 80-
year simulation, estimated P export from pixels in the test
watershed more than doubles from 8.8 to 18.3 t year�1. This
increase is the direct consequence of increases in soil test P brought
about because of the excess of P inputs over P outputs across much
of the test watershed.

The key to the DISPLA approach is in portraying the spatial
patterns of P behavior. Fig. 8 presents maps of soil test P for the
watershed predicted by DISPLA under baseline conditions for
simulation years 1 and 50 only.

The maps show that soil test P does not increase uniformly with
time across the LOC watershed. In the DISPLA simulation, the
change in soil test P is a synthesis of initial conditions, and P
management all of which vary across the landscape. As shown in
Fig. 8, soil test P increases in specific areas that can be considered
‘‘hot-spots’’ of elevated soil test P. The spatial variability shown by
these maps is probably considerably muted because most input
parameters such as initial soil test P and P application rates were
broadly estimated; actual data would have been considerably
more heterogeneous.

Fig. 9 presents maps of simulated annual P export from pixels of
the test watershed predicted by DISPLA for the baseline simulation
for years 1 and 50. As with soil test P, areas of high P export are not
uniformly distributed across the watershed; rather, they are quite
scattered across the landscape and appear to represent a minority
of watershed land. Because P export is driven by runoff, areas of
highest simulated export occur in areas of high probability of
runoff. Note that many of the soil test P hot-spots (Fig. 8) do not



Fig. 8. Maps of soil test P in the test watershed simulated by DISPLA for the baseline scenario in year 1 (left panel) and in year 50 (right panel). Polygons outlined in red indicate

zones of elevated initial soil test P. Areas of RCAp = 1.0 are outlined in blue.

Fig. 9. Maps of P export from pixels in the test watershed simulated by DISPLA for the baseline scenario in year 1 (left panel) and in year 50 (right panel). Polygons outlined in

red indicate zones of elevated initial soil test P. Areas of RCAp = 1.0 are outlined in blue.
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result in hot-spots of P export (Fig. 9) because they are not in a high
runoff area. The light blue polygons in Fig. 9 outline the area with
RCAp = 1.0, and it is apparent that most of the high P export pixels
are contained within these regions.

5. Conclusions

DISPLA successfully combines the temporal features of dynamic
mass-balance P modeling with spatial variability across a complex
watershed landscape. Long-term simulations using DISPLA can
capture the spatial variability of factors influencing P storage and
flux, while accounting for the driving force of P mass balance as it
evolves over time. Our simulations – even in a test watershed
where the full extent of natural variability was not captured –
demonstrate clearly that areas of P accumulation and therefore of
high risk of P export are not uniformly distributed across a
watershed or even within a particular land use. ‘‘Hot-spots’’ exist
that reflect unique combinations of geophysical and management
characteristics and those hot-spots change through time and in
response to management.
DISPLA simulation of present-day conditions shows that:
� If
 present-day management continues, both soil test P and P
export will increase dramatically over much of the test
watershed.

� U
nder present management, land in corn represents the greatest

concern for increasing soil test P concentrations and for P export.

� In
creases in soil test P over time in the test watershed are not

uniform, but vary spatially in response to variability in initial
conditions and in ongoing natural and management processes;
DISPLA analysis can identify hot-spots of projected high soil test
P.

� A
reas of high P export risk are also identified in DISPLA

simulations; these areas tend to be the coincidence of high soil
test P and high probability of runoff.

Results from DISPLA under the baseline scenario suggest that
nonpoint sources of P in a watershed will evolve over time and are
likely to occur in limited areas that can be identified. In response,
improved management could be applied preferentially to hot-
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spots to reduce nonpoint source P losses. The structure of DISPLA
allows us to do just that and to predict the results.
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